Accelerometer can accurately measure training load in badminton

Yi-Chih Lin1,2, Tsung-Han Liu1,3 and Tzyy-Yuang Shiang4

1 Department of Physical Education, National Taiwan Normal University
2 Office of Physical Education, Tunghai University
3 Victor Rackets Ind. Corp.
4 Department of Athletic Performance, National Taiwan Normal University

05/25/2018
Introduction

• Badminton is a racket sport.

• Actions are short in duration and of high intensity.

• Perform specific movement include: lunging, jumping, powerful strokes.

(Phomsoupha, & Laffaye, 2015)
Internal-Load Monitoring

- The most common method to determine the internal loads of athletes is through Heart Rate (HR) monitoring and analyses.
- Linear relationship between HR and oxygen consumption (VO$_2$).
- Badminton games
 - HR Between 166 and 188 bpm
 - Maximum HR between 191 and 195 bpm

(Cabello-Manrique, 2003; Wonisch, 2003; Coelho, 2012; Abdullahi, 2017)
External-Load Monitoring

- GPS devices
- IMU (accelerometer, magnetometer and gyroscope)
 - monitors and describes movement
 - also provides information on intensity and frequency

(Leser, 2013; Cardinale, 2017)
Accelerometer

- Objective assessment of physical activity (PA)

- Translate the measured acceleration data into relevant information that describes *individual* behavior in terms of physical activity.

 (Sievänen & Kujala, 2017)

- Data for: Physical activity, intensity, time, frequency etc.
Accelerometer

Body Site Locations

- The accelerometer can be attached to different body sites: Hip, wrist, thigh, ankle, chest

 (Welk, et al., 2004 & Kamada, et al., 2016)

- **Wrist-worn** location is the ideal site as it is comfortable for the participants

Physical Activity (PA) and Heart Rate

- Heart rate is often used as a **physiological indicator** for athletes in monitoring physical intensity.
 (Andrew et al., 2013)

- **linear relationship** between speed and HR.

- Speed and heart rate are indicators of energy consumption.
 (Stallard, et al., 1978; Stallard & Rose, 1980; Reis, et al., 2011)
Heart rate monitoring problems

- HR shows a delayed response to sudden high intensity movements
- Takes some time to return to pre-activity levels
- Heart rate “plateau”
- Factors such as the condition of the court, the temperature, humidity (weather), dehydration and emotional stresses are a few factors that may lead to estimation errors with regard to the internal match load of players

(Jeukendrup, 1998; Coe, 2001)
Advantage of Accelerometer

✓ Real-time exercise intensity
✓ When the heart rate plateaus, the Accelerometer will continue to its measurements

(Cardinale, 2017)
Sensor applications in sports

indoor

outdoor

(Mendes Jr et al., 2016)
Accelerometer & Load Monitoring

- Help to avoid athletics’ injury
- Improve athletics’ performance
- Help to design Training programs and measure athletes/team participation

(Cardinale, 2017)
Purpose

• The purpose of this study is to use the accelerometer to quantify physical intensity.

• provide information for coaches to arrange training programs and improve the performance of the athletes.
Methods

• 5 male participates (3 singles & 2 doubles)

• Level: general, university’s badminton team players

• Age: 21.8 ± 1.7 yrs; heights: 173.1 ± 6.3 cm; weights: 70.5 ± 8.4 kg; training experience: 5.0 ± 1.8 yrs

• WisMe physical intensity tracker
Experiment equipment

- Integrate triaxial acceleration

- The Raw data was provide by a cloud system where the top ten intensity values were listed every minute

- Accelerometer was worn on non-dominant wrist
Experiment processing

1. Wore accelerometer on non-dominant wrist
2. Footwork training
3. Specific training situations
 Playing simulation games
Experiment - 1

- Footwork training (six-corners)
 - 20 times x 7 sets

- Compared the intensity between singles and doubles
Experiment - 2

Specific training situations

- Situation one: smash -> net
- Situation two: drop shot -> net
- Situation three: rapid-shots, whole court

Compare intensity of situations
Experiment - 3

- Playing simulation games
 - Singles
 - Doubles

- Compared and listed ratios for the intensity of singles and doubles
Data analysis-1

- Data collection and actual acceleration
- Intensity:
 - Data were collected and analyzed based on the top ten acceleration every minute.
 - AVERAGE (A1:A10)

<table>
<thead>
<tr>
<th>time</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
<th>G8</th>
<th>G9</th>
<th>G10</th>
</tr>
</thead>
<tbody>
<tr>
<td>19:36</td>
<td>37</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>29</td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>19:37</td>
<td>104</td>
<td>36</td>
<td>34</td>
<td>33</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>19:38</td>
<td>64</td>
<td>48</td>
<td>43</td>
<td>41</td>
<td>37</td>
<td>37</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>19:39</td>
<td>69</td>
<td>66</td>
<td>61</td>
<td>54</td>
<td>48</td>
<td>47</td>
<td>45</td>
<td>37</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>19:40</td>
<td>52</td>
<td>39</td>
<td>39</td>
<td>38</td>
<td>36</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>19:41</td>
<td>98</td>
<td>97</td>
<td>95</td>
<td>89</td>
<td>87</td>
<td>86</td>
<td>85</td>
<td>84</td>
<td>81</td>
<td>80</td>
</tr>
<tr>
<td>19:42</td>
<td>110</td>
<td>107</td>
<td>103</td>
<td>101</td>
<td>101</td>
<td>100</td>
<td>99</td>
<td>95</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>19:43</td>
<td>118</td>
<td>107</td>
<td>104</td>
<td>104</td>
<td>98</td>
<td>97</td>
<td>95</td>
<td>93</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td>19:44</td>
<td>111</td>
<td>108</td>
<td>105</td>
<td>102</td>
<td>98</td>
<td>95</td>
<td>92</td>
<td>92</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>19:45</td>
<td>116</td>
<td>115</td>
<td>115</td>
<td>113</td>
<td>101</td>
<td>101</td>
<td>98</td>
<td>94</td>
<td>94</td>
<td>92</td>
</tr>
<tr>
<td>19:46</td>
<td>100</td>
<td>99</td>
<td>91</td>
<td>85</td>
<td>84</td>
<td>83</td>
<td>82</td>
<td>81</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>19:47</td>
<td>134</td>
<td>127</td>
<td>114</td>
<td>106</td>
<td>98</td>
<td>93</td>
<td>90</td>
<td>85</td>
<td>84</td>
<td>78</td>
</tr>
<tr>
<td>19:48</td>
<td>123</td>
<td>101</td>
<td>101</td>
<td>98</td>
<td>97</td>
<td>95</td>
<td>93</td>
<td>88</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>19:49</td>
<td>122</td>
<td>119</td>
<td>116</td>
<td>101</td>
<td>97</td>
<td>89</td>
<td>88</td>
<td>86</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>19:50</td>
<td>134</td>
<td>121</td>
<td>113</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>87</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>19:51</td>
<td>124</td>
<td>119</td>
<td>115</td>
<td>112</td>
<td>100</td>
<td>87</td>
<td>84</td>
<td>79</td>
<td>77</td>
<td>72</td>
</tr>
</tbody>
</table>
Data analysis-2
Relationships between HR, Speed and Accelerometer

![Graph showing the relationship between speed and intensity](image-url)
The data in the simulation was divided into: light, moderate, heavy and maximum rations.
Results & Discussions-1

Footwork training

- Single’s players intensity more higher than double’s players
Results & Discussions - 2

Specific training situations

<table>
<thead>
<tr>
<th>smash -> net</th>
<th>drop shot -> net</th>
<th>rapid shot, whole court</th>
</tr>
</thead>
<tbody>
<tr>
<td>intensity</td>
<td>Heavy (6.5 g)</td>
<td>Moderate (4.7 g)</td>
</tr>
</tbody>
</table>

- Different intensities

(smash) > (rapid shot, whole court) > (drop shot)
Results & Discussions - 3

Playing simulation games

Singles
- Moderate: 58%
- Light: 18%
- Heavy: 15%
- Maximum: 9%

Doubles
- Moderate: 63%
- Light: 9%
- Heavy: 18%
- Maximum: 10%

INTENSITY LEVEL / TIME
- Heavy + Maximum = 24%
- Light + Moderate = 76%

INTENSITY LEVEL / TIME
- Heavy + Maximum = 28%
- Light + Moderate = 72%
Results & Discussions - 3

- Badminton games characterization
 - Combined 70% aerobic system and 30% anaerobic system.

(Phomsoupha & Laffaye, 2015)
Applications/Practices

- Badminton player’s training-monitoring
- Information for coaches to arrange training programs, design and player’s recovery
- Develop badminton intensity tracking
Research limits

- Participants were general level of male University’s badminton team players.

- Personal physical fitness and skill ability.

- Sensor data used top ten acceleration every minute
Conclusions

- Accelerometer data be used to evaluate badminton intensity.

- Badminton game (Intensity / Time) data results:
 - light to moderate intensity = 70%,
 - heavy to maximum intensity = 30%
Thank you for your attention
Introduction

• Quantified Self
 • incorporate technology into data acquisition on aspects of a person's daily life
• Record physical activity
• Health management
Intensity physical activity

- 129 adults (39 men and 90 women) from York University
- no exercise habits
- Self-Estimate of PA Intensity (walk and/or jog on the treadmill at a speed)
- Peak VO\textsubscript{2} Peak Exercise Test

Subjective assertion will underestimate exercise intensity, objective measurement can give correct exercise intensity

(Canning et al., 2014)