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Project Summary 

        This project was aimed to investigate, estimate, and monitor the knee and 

ankle joint loadings of badminton athletes from lab test with ‘gold-standard’ 

facilities to on-court intelligent analysis. Previously established protocol of 

motion capture and musculoskeletal modelling techniques were employed, 

with further integration of wearable IMUs (inertial magnetic unit). We also 

developed Principal Component Analysis (PCA) model to extract features in 

the loading parameters, and multivariate Partial Least Square Regression 

(PLSR) machine learning model to correlate easily-collected variables, such as 

the approaching velocity, and peak acceleration, with knee and ankle loading 

parameters (moments and contact forces). Promising accuracy of the PLSR 

model using the input parameters was observed, further sensitivity analysis 

found a single variable from ankle IMU could predict an acceptable range of 

patterns and magnitudes of knee and ankle loadings. The attachment of this 

single IMU sensor could not only record and predict loading accumulation and 

distribution but also exert little influence on the movement of the lower 

extremity. Information from this project would be used to monitor lower 

extremity loading from badminton during training and competition sessions, 

and assist the training scheme design and dynamic adjustment in a scientific 

manner, thus help prevent fatigue, reduce injury risks and improve training 

efficacy and athletic performance. (We also attached the PCA and PLSR 

models developed from this project in the Appendix for the reference of research 

interest from the badminton research or practitioner communities.) 

 

1. Background / Introduction 

        The current project followed up our previous project on the investigation 

of knee joint loadings during directional badminton lunges using 

musculoskeletal and finite element modelling, which was supported by the 

BWF research project 2018-2019. The project found that the left-side (forecourt 

and backcourt) backhand lunges exhibited larger knee loadings (i.e. joint 

moments and contact forces) comparing to the right-side (forecourt and 

backcourt) forehand lunges [ref to Mei et al., BWF project report 2018-2019, (2019)]. 

It was further proposed that a next-step research focusing on the dynamic 

monitoring of lower extremity loadings from the lab-simulated court towards 

on-court intelligent monitoring. A key issue in previous studies was that the 

lab-simulated studies strictly controlled variables, which is not the case during 



 

 

the on-court real scenario training and competition. 

        The injuries to the lower extremity, especially knee and ankle joints, have 

been commonly reported and documented in previous studies (Chard & 

Lachmann, 1987; Fahlström et al., 1998; Fong et al., 2007; Jérgensen & Winge, 

1987; Kroner et al., 1990). Lab-simulated experiments have been conducted to 

reveal the potential injury mechanism (W. Lam et al., 2020; Lee & Loh, 2019; 

Phomsoupha & Laffaye, 2020). However, it was also acknowledged that 

biomechanical experiments in the lab-simulated environment are different 

from on-court ‘real scenario’ training and competition. 

        The prevention of injuries in badminton has been a key research interest of 

several area across sports scientist, biomechanist, physical therapist and sport 

medicine clinician. Based on the contributing mechanism, the injuries have 

been classified as chronic injury due to the reason of repetitive loading 

accumulation and acute injury from unexpected incursion (Goh et al., 2013; 

Reeves et al., 2015). Our recent study (Mei et al., 2020) has revealed the loading 

patterns of knee joint from directional sub- and maximal- lunges in a lab-

simulated court. The challenge of discrepancy between lab test with on-court 

situation was further reported and highlighted. Recently, the rapidly emerging 

wearable technology in the biomechanics research community provide 

plausible and accessible approaches to solve this issue with integration of 

machine learning and artificial intelligence techniques. These have been 

implemented in the measurement of gait patterns (Shahabpoor & Pavic, 2017) 

and monitoring of running loads accumulation (Ueberschär et al., 2019; Van 

Hooren et al., 2020). 

        The purpose of the current project was to conduct a perspective study on 

monitoring of loads in the knee and ankle joints using wearable technology and 

machine learning estimation. Thus, this project firstly correlated the data from 

wearables with ground-truth lab test to develop and validate intelligent 

machine learning models. Specifically, the Principal Component Analysis (PCA) 

model will be developed for feature extraction and dimensionality reduction 

thus correlating data in wearables with ‘ground-truth’ lab test and the Partial 

Least Squares (PLS) regression machine learning model for multivariate 

correlation and prediction to estimate the loads in the ‘real world’ scenario on-

court badminton training and competition. 

 



 

 

2. Methodology 

2.1 Participant 

        A total of 25 badminton athletes joint the lab test with synchronized 

collection of motion data and IMU (inertial measurement unit) data (fist 

session). Another 25 athletes participated the data collection during training or 

match during on-court real situation (second session). This study was approved 

by the ethic committee from the Research Academy of Grand Health in Ningbo 

University. All athletes were informed of the requirements, objectives and 

procedures of the lab and on-court tests with written consent.    

2.2 Protocol 

        The first session of the lab test synchronized the 3D motion capture and 

wearable sensors. The test involved a twelve-camera Vicon system and Vicon 

IMU (inertial measurement unit) wearable sensors (Vicon Metrics Ltd., Oxford, 

United Kingdom), and AMTI 3D force plate (AMTI, Watertown, MA, United 

States) (Figure 1). The collection frequency of Vicon camera system was set at 

200Hz, and the IMU and force plate were set at 1000Hz.  

        In order to mimic the real movements, we employed an established full-

body marker-set model during motion capture (Rajagopal et al., 2016). The IMU 

sensors to the ankle and knee joints were illustrated in the Figure 1B. 

Specifically, 2cm below the medial condyle of proximal tibia was placed for the 

knee IMU, and 3 cm superior to the medial malleolus of distal tibia was place 

for the ankle IMU (Sheerin et al., 2020; Xiang et al., 2020). To follow-up our 

previous project, the four directional sub-maximal and maximal lunges were 

performed with synchronous collection of motion, ground reaction force, and 

IMU data for further processing and analysis. Specifically, the sub- and 

maximal- right-forward forehand lunges (Sub-RF, and Max-RF), sub- and 

maximal- left-forward backhand lunges (Sub-LF, and Max-LF), right-

backward backhand sub- and maximal- lunges (Sub-RB, and Max-RB) and left-

backward backhand sub- and maximal- lunges (Sub-LB, and Max-RB) were 

performed. 

        The second session was performed on a real-court while the athletes 

conducted badminton training or match with attached IMU to the knee and 

ankle as highlighted placement in the Figure 1B. IMU signals from a single 

training or competition session (approximately 2 hours) were collected with 

data stored ‘on-board’ in the memory disk in the sensor. The data were then 

extracted for further processing and analysis.  



 

 

 

Figure 1. Illustration of lab setup and knee and ankle IMUs placement 

 

2.3 Data Processing 

        Following previously established protocols of musculoskeletal OpenSim 

modelling, the joint kinematics, kinetics, and contact forces were calculated. 

Machine learning models were also developed and tested using motion capture 

data against the acceleration and angular velocity data from wearable sensors. 

 

Figure 2. Illustration of musculoskeletal modelling pipeline 

 



 

 

        Firstly, the static marker positions and body mass were used to ‘scale’ the 

generic model to athlete matching subject-specific musculoskeletal models 

(Figure 2) as per the standardized workflow (Delp et al., 2007). The ‘Inverse 

kinematics’ (IK) algorithm, which minimized errors between virtual markers 

in the model and experimental marker trajectories, was employed to compute 

joint angles. Then the ‘Inverse Dynamics’ (ID) was performed to calculate joints 

moment, and the ‘Static Optimization’ (SO) was employed to compute muscle 

activation and forces. The estimated muscle activation was compared against 

measured surface EMG signals to validate the model. Lastly, the contact forces 

to the knee and ankle joints in the anterior/posterior (x), superior/inferior (y), 

and medial/lateral (z) directions were computed using ‘Joint Reaction’ (JR) 

analysis. 

 

Figure 3. Illustration of synchronized IMU signals with ground reaction forces 

 

        Apart from the biomechanical variables, we also calculated the parameters 

of contact time, approaching velocity, peak IMU acceleration (G) in the knee 

and ankle joints as presented in the Figure 3. The axial (y-axis) acceleration of 

particular interest was taken for analysis to quantify the accumulation of 

impact in the lower extremity (tibia) (Rice et al., 2019; Tenforde et al., 2020), 

which was normalized by the gravitational acceleration (G = 9.8m/s2). 



 

 

 

Figure 4. Illustration of knee and ankle loading parameters 

 

        The processed time-varying moment and contact force parameters during 

lunging stance (Figure 4), such as knee flexion/extension moment, knee 

varus/valgus moment, knee rotation moment, ankle dorsi/plantar flexion 

moment, ankle inversion/eversion moment, knee ant-post/med-lat/vertical 

contact forces, and ankle ant-post/med-lat/vertical contact forces were 

interpolated (normalized) into 101 datapoint for statistical modelling.  

 

2.4 Statistical Modelling 

        We developed two multivariate statistical models in the current project, 

specifically Principal Component Analysis (PCA) model and Partial Least 

Squares Regression (PLSR) model. using the MATLAB software (R2019a, The 

MathWorks Inc., MA, USA). 

        The PCA multivariate technique was used to reduce the high-dimensional 

data matrices into orthogonal PCs (principal components), which explained 

major variations within the dataset (Deluzio et al., 1997; Lever et al., 2017). Each 

variation reported in the PCA modelling was feature extraction applied in the 

machine learning technique (Phinyomark et al., 2018).  

 



 

 

        Specifically as presented in the Equation (1), the original matrices (X = x1, 

x2, x3, … x99, x100, x101) * m were orthogonally transformed into uncorrelated 

principal components (Z = z1, z2, z3, …, zp) (p < 101), corresponding loading 

vectors (T2 = T1, T2, T3, …Tm) and residuals (Q), which was defined as Z = X*T2 

(Deluzio et al., 1997). 
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          The m equals 200 (4*2*101 matrices) for PCA modelling of the four lunges 

(RF, LF, RB, and LB) with sub- and maximal- performance. This study mainly 

accounted for the main variations in the first three PCs (z1, z2, & z3), which 

accounted for over 85~90% of variation. The variations in the vertical ground 

reaction force, knee and ankle moments, and contact forces of the first 3PCs 

were plotted against the mean for visualization of the key features, with ‘+’ and 

‘▽’ representing upper and lower limits, respectively. 

 

 

Figure 5. The development of PLSR machine learning 

 



 

 

        In terms of PLSR model, the two fundamental equations in PLSR are the 

predictor matrix (XNM) and the response matrix (YNP) in the above Figure 5. The 

subscript N is the number of data sets (25*4 training samples in this study). The 

subscript M is the number of predictor variables (4 metrics, such as contact 

times, velocity, peak knee G, and peak ankle G). The subscript P is the number 

of response variables (12 loading variables, such as loading rate, knee flex-

extension/varus-valgus/int-ext rotation moments, ankle dorsi-plantar flexion/ 

inversion-eversion moments, knee ant-post/med-lat/vertical contact forces, and 

ankle ant-post/med-lat/vertical contact forces), and the subscript L is the 

number of components. T and U are the projection matrices (also known as 

scores), and P and Q are the transposed orthogonal loading matrices (where 

the rows are created from eigenvectors or principal components), and E and F 

are the error or residual terms. The score vectors are related using a linear 

function, U = f(T) + H, where H is the vector of residuals.      

 

3. Results / Key findings 

3.1 PCA 

        The vertical ground reaction force (Figure 6A) was classified into four key 

phases, including initial impact peak, secondary impact peak, weight 

acceptance, and drive-off phases (Figure 6B). Following the PCA modelling of 

the vertical GRF, the first mode (PC1, Figure 6C) showed main variations from 

landing to the initial impact peak (Phase-I), which was loading rate (LR) being 

calculated as a key impact parameter. The second mode (PC2, Figure 6D) was 

in the secondary impact peak (Phase-II), and the third mode (PC3, Figure 6E) 

was the combination of variations in both initial and secondary impact peak 

(Phase-I & Phase-II). 



 

 

 

Figure 6. Classification of four phases in the lunging ground reaction force 

(B), and three principal modes of variance (C, D & D) 

 

        Consistent with the variations of vertical GRF, the knee flexion/extension 

and varus/valgus moments showed great variances during the landing (impact 

absorption) phase. As particular interest and principal mode to illustrate 

variance, the PC1 of knee flexion/extension (33.96%) and varus/valgus (32.61%) 

moments are presented in the Figure 7A & Figure 7B. Similarly, the PC1 of 

knee axial (vertical) contact force (Figure 7D) exhibited great variances during 

mid-stance (weight acceptance phase) with explanation of 35.26% between sub- 

and maximal- lunging steps.  

        Whilst the ankle dorsi/plantar flexion moments have variance over the 

stance, specifically the PC1 (48.14%) during impact absorption and drive off 

phrases (Figure 8A). Similarly, in the axial contact force, a great variation (PC1, 

40.22%) in the impact peaks (initial & secondary) and drive off phases was 

observed (Figure 8B & Figure 8C). 

 



 

 

 

Figure 7. Principal mode of knee moments variation (A & B), and mean and 

principal variation in the axial knee contact force (C & D)  

 

Figure 8. Principal variation of ankle dorsi/plantar flexion moment (A), and 

mean (B) and principal mode of ankle axial contact force (C) 



 

 

3.2 PLSR  

        Following the PCA modelling, the LR (loading rate), peak knee 

flexion/extension, varus/valgus, and int/ext rotation moments, peak ankle 

dorsi/plantar flexion, inver/eversion moments, peak knee ant-post/med-

lat/axial (vertical) contact forces, and peak ankle ant-post/med-lat/axial 

(vertical) contact  forces were used as loading parameters for responses in the 

PLSR machine learning model. Signals from IMU sensors, such as contact times, 

velocity, peak acceleration (knee) and peak acceleration (ankle), were input as 

predictors in the PLSR machine learning model. 

        Together with the four predictors, a prediction accuracy of 94.52% was 

observed for the moments and contact forces in the knee and ankle joints 

(Figure 9). To test the sensitivity of the peak knee and ankle acceleration, we 

performed a ‘leave-one-out’ cross validation and found that both peak knee 

and ankle acceleration could predict 93.72% of the loadings. Specifically, the 

knee peak acceleration had an 88.76% of prediction accuracy and the ankle peak 

acceleration had a 93% of prediction accuracy.  

 

Figure 9. Performance of the PLSR machine learning model 

 

4. Discussion / Implications 

        This project firstly integrated the wearable sensors with in-lab motion 

capture analysis to correlate the data from wearables, aiming to develop and 

validate machine learning prediction models. Secondly, wearable sensors were 



 

 

attached on badminton athletes’ lower limb during training and/or competition 

for the on court ‘real world’ data collection. As the key findings indicated, the 

variances between the vertical GRF of sub- lunges and maximal- lunges located 

in the initial and secondary impact peaks (including the loading rate). Similar 

variances in the knee flexion/extension and varus/valgus moments were found 

in the time frames, apart from the axial knee contact force differed during the 

mid-stance. While the ankle dorsi/plantar flexion moment and axial contact 

force showed greater variances during the initial landing (impact absorption) 

and push off phases between sub- and maximal- lunges. 

        During the gait test, we employed the well-established protocols (Huang 

et al., 2014; Kuntze et al., 2010; W. K. Lam et al., 2017; Lin et al., 2015; Mei et al., 

2017) for the motion capture and synchronously integrated the IMU sensors to 

set up ground truth ‘gold-standard’. The wearable technologies have been 

implemented in the recognition of badminton relevant movements for game 

analysis, showing promising accuracy (Steels et al., 2020). The primary 

objectives of this project were to monitor the loadings (joint moments and 

contact forces) in the knee and ankle with machine learning models. 

        As for the injuries in the lower extremity of badminton players, several 

recent review studies on badminton injuries and lunges (W. Lam et al., 2020; 

Lee & Loh, 2019; Phomsoupha & Laffaye, 2020) reported that fatigue of 

musculature system was a key factor contributing to reduced performance and 

loading accumulation (increased injury risks). Dynamic loading accumulation 

and distribution in the ‘real world’ scenario data from wearables during 

training and competition were monitored and reported based on the correlative 

prediction machine learning model. Typically, it was demonstrated that an 

physics-based and machine learning combined model offered promising 

solutions for tibia loading accumulation (Matijevich et al., 2020). 

        The main features extracted from PCA modelling in the vertical GRF and 

knee and ankle moments and contact forces were the magnitude difference, 

considering that the occurring of different timeframe during stance. Specifically, 

during the initial and secondary impact peak phases, the variances in the knee 

and ankle moments were observed, which may be explained by the different 

approaching speeds between sub- (~2,5m/s) and maximal- (~3.5m/s) lunges, 

similar to recent studies (Chen et al., 2020; W. K. Lam et al., 2018). Whilst the 

axial knee contact force varied between sub- and maximal- lunges during mid-

stance of weight acceptance phase, which may be attributed to higher impact 



 

 

and highly activated muscular contractions. The difference between directional 

lunges were not reported as being studied in our previous project that left-side 

(backhand) forward and backward lunges showed higher knee loadings than 

the right-side lunges. This was aimed to mimic the real on-court situation that 

shuttles were not returned in an anticipated manner from the opponent, and 

athletes could perform any directional lunges. 

        In terms of the difference during drive off in the ankle plantarflexion 

moment and axial contact forces, these may be the different multi-joint 

coordination patterns, as higher motion acceleration and deceleration could be 

observed in the sub- and maximal- lunges (Lee & Loh, 2019). The different 

acceleration and deceleration strategies or coordination thus exerted greater 

impact in the ankle, which functioned as the primary interface with the court. 

        The multivariate machine learning (PLSR) model we developed showed 

promising performance (~94.52% accuracy) while input the contact times, 

approaching velocity, peak ankle acceleration and knee acceleration to predict 

knee and ankle loadings. These input parameters could be easily measured or 

calculated from the IMU sensors. In order to simplify the machine learning 

prediction model, we trained the PLSR model with peak ankle and knee 

acceleration, showing similar accuracy (~93.72%). Considering the attachment 

of two belts with IMU to the proximal and distal tibia may limit the movements 

of badminton athletes, we used the single knee or ankle IMU each as predictor 

in the PLSR model, and the knee IMU and ankle IMU showed accuracy of 88.76% 

and 93%, respectively. From the sensitivity analysis of the PLSR model we 

developed, it was learnt that a single IMU sensor attaching to the anterior distal 

tibia above the medial malleoli could predict approximately 93% of loadings in 

the ankle and knee joint. Meanwhile, the 15% of total step accounts measured 

during one single match could be used to estimate the loading accumulation in 

the knee and ankle joints. 

        In summary, this project utilized the wearable technology and machine 

learning models to assist monitoring of joint loadings from lab to on-court ‘real-

world’ scenario.  The intelligent and dynamic framework developed in the 

current project provide a perspective to address the gap between lab and court 

analysis. The intelligent monitoring and feedback of loading patterns or 

accumulation would be integrated to design the training and competition 

schemes in a scientific manner, thus help prevent fatigue, reduce potential 

loading-accumulation related injury and maximize athletic performance. 



 

 

5. Appendix – Machine learning models 

The appendix includes PCA (principal component analysis) modelling of vGRF 

(vertical ground reaction force), moments and contact forces in the knee and ankle 

joints.  

 

5.1 Appendix I – Principal Component Analysis (PCA) Model (feature 

extraction) 
% Principal Components Analysis (PCA) modelling of vGRF, Moments and Contact forces 

% Qichang Mei, Nov 2020, Ningbo University; The University of Auckland  

% Email: qmei907@aucklandui.ac.nz 

 

clear; clc   %clear workspace 

close all    %close all figures 

  

  

%% Load and combine data into a single array 

 load('sub_max_lungeGRFv.mat'); 

 Y = [sub_lunge max_lunge]'; 

 t = linspace(0, 100, 101)';  %time 

  

  

%% Run PCA 

[coeff,score,latent,tsquared,explained] = pca(Y); 

  

%% Visualize mean of sub and max lunges 

figure (1) 

plot (mean(sub_lunge'), 'linewidth', 2); 

hold on 

plot (mean(max_lunge'), 'linewidth', 2); 

legend ('SubLunge', 'MaxLunge') 

  

%% Visualize first two PCs 

figure(2) 

pc1 = coeff(:,1); 

pc2 = coeff(:,2); 

pc3 = coeff(:,3); 

plot(t, pc1, 'r', 'linewidth', 3) 

hold on 

plot(t, pc2, '--k', 'linewidth', 3) 

hold on  

plot(t, pc3, ':b', 'linewidth', 3) 

legend('PC-1', 'PC-2', 'PC-3') 

  

  

%% Visualize first PC in the context of the overall mean trajectory 

figure(3) 

ymean = mean(Y, 1)'; 

scoresd = std(score, [], 1)'; 

plot(t, ymean, 'k', 'linewidth', 3) 

hold on 

plot(t, ymean + scoresd(1) .* pc1, '-r+', 'linewidth', 2) 

plot(t, ymean - scoresd(1) .* pc1, '-rv', 'linewidth', 2) 

title('PC-1') 

  

  

%% Visualize second PC in the context of the overall mean trajectory 

figure(4) 

plot(t, ymean, 'k', 'linewidth', 3) 

hold on 



 

 

plot(t, ymean + scoresd(2) .* pc2, '-k+', 'linewidth', 2) 

plot(t, ymean - scoresd(2) .* pc2, '-kv', 'linewidth', 2) 

title('PC-2') 

  

%% Visualize third PC in the context of the overall mean trajectory 

figure(5) 

plot(t, ymean, 'k', 'linewidth', 3) 

hold on 

plot(t, ymean + scoresd(3) .* pc3, '-b+', 'linewidth', 2) 

plot(t, ymean - scoresd(3) .* pc3, '-bv', 'linewidth', 2) 

title('PC-3') 

  

  

%% Visualize first two PC scores 

figure(6) 

plot( score(1:8,1), score(1:8,2), 'bo' ); 

hold on 

plot( score(9:16,1), score(9:16,2), 'ro' ); 

% plot( score(11:20,1), score(11:20,2), 'ro' ); 

xlabel('PC-1') 

ylabel('PC-2') 

legend('SubLunge', 'MaxLunge') 

ax = gca(); 

plot([0 0], get(ax,'ylim'), 'k:') 

plot(get(ax,'xlim'), [0 0], 'k:') 

  

%% Visualize percentage explained and Accumulation 

figure(7) 

bar (explained (1:12, 1));  

hold on 

plot(cumsum(explained(1:12,1)), 'linewidth', 3) 

xlabel ('PCs') 

ylabel ('Variation Explained') 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5.2 Appendix II – Partial Least Squares Regression (PLSR) Model (multivariate 

prediction) 
% PLSR foot shape/pressure modelling in Matlab 

% Qichang Mei, Nov 2020, Ningbo University & The University of Auckland 

% Email: qmei907@aucklanduni.ac.nz 

  

  

%% Read in data from an excel file. 

% x are the predictors  

% y are the responses 

  

x = xlsread('IMU2GRF_Moment_ContactForce.xlsx','Sheet1','C3:F50'); 

y = xlsread('IMU2GRF_Moment_ContactForce.xlsx','Sheet1','I3:T50'); 

  

  

%% Create a PLSR model with 4 components 

[Xloadings,Yloadings,Xscores,Yscores,betaPLS4,PLSPctVar] = plsregress(x,y,4); 

  

  

% Create predicted output from PLSR model 

[n,p] = size(x); 

yfitPLS4 = [ones(n,1) x]*betaPLS4; 

 plot(y,yfitPLS4,'bo','MarkerSize',8,'MarkerEdgeColor',[1 1 1],'MarkerFaceColor','b'); % Feel free to change MarkerSize, 

MarkerColor, FontSize ... as your preferrence 

 xlabel('Observed Ankle-Knee Loadings','FontSize',12,'FontWeight','bold');  

 ylabel('Predicted Ankle-Knee Loadings','FontSize',12,'FontWeight','bold'); 

 title("IMU2Ankle-Knee Loadings",'FontSize',16,'FontWeight','bold'); 

 

  

%% Compute RMSE value 

RMSE = sqrt(mean((yfitPLS4 - y).^2)); 

 

  

%% Compute R2 value using corrcoef function (Prediction accuracy) 

R=corrcoef(y,yfitPLS4); 

Rsquared = R(1,2)*R(1,2) 

 

  

%% Add line of best fit 

 hold on; 

   coef_fit = polyfit(y,yfitPLS4,1); 

   y_fit = polyval(coef_fit,xlim); 

   plot(xlim,y_fit,'-b','LineWidth',3);  

  % display R2 value on plot at coordinates 1200,1200 

  % text(10, 10, ['R^2 =' num2str(Rsquared)]) 

 hold off; 
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