COMPARING SMASH PERFORMANCE AND TECHNIQUE BETWEEN ELITE MALE AND FEMALE BADMINTON PLAYERS

Mark King and Harley Towler

Best university in the world for sports-related subjects six years running

QS World University Rankings by Subject 2017-2022

SPORTS BIOMECHANICS

 mechanical understanding and explanation of movement in sport

- identify the factors that are important
 - performance
 - injuries

PHILOSOPHY

some factors are critical for elite performance

 other factors are less important and will be governed by coaching, individual variation etc

BADMINTON SMASH - BUILD UP OF SPEED

BADMINTON SMASH - BUILD UP OF SPEED

EXAMPLE MALE BADMINTON SMASH

EXAMPLE FEMALE BADMINTON SMASH

PURPOSE

 how does smash performance and technique compare between elite male and female badminton players?

(majority of research to date has been on male players)

DATA COLLECTION – PARTICIPANTS

variable	male	female
n	26	26
age (y)	25.5 ± 4.6	23.0 ± 2.7
height (m)	1.82 ± 0.06	1.71 ± 0.07
mass (kg)	75.9 ± 4.0	63.6 ± 8.9
world ranking	59 ± 36	54 ± 24

DATA COLLECTION - ALL ENGLAND CHAMPIONSHIPS 2016

DATA COLLECTION - BADMINTON ENGLAND DEC' 2016

DATA COLLECTION - BADMINTON ENGLAND DEC' 2016

DATA COLLECTION - WORLD CHAMPIONSHIPS - GLASGOW

RAW DATA

LABELLED

SKELETON

RESULTS

parameter	male	female
shuttlecock speed (m/s)	98.7 ± 3.6	78.5 ± 8.2
racket head speed (m/s)	63.3 ± 2.9	51.0 ± 4.7
swing duration (ms)	183 ± 15	211 ± 33
shuttle vertical angle↓ (°)	13.3 ± 2.2	7.3 ± 2.6
contact height (m)	2.90 ± 0.13	2.46 ± 0.15
jump height (cm)	53.6 ± 9.4	14.5 ± 11.0

SHUTTLE OUTCOME COMPARISON

male female

0 - 0.41 s (male shuttle has landed)

based on average velocities, vertical angle and height of contact

SHUTTLE OUTCOME COMPARISON

male female

extra 0.08 s to reach equivalent position (to the right) of males (+20%) extra 0.2 s to land compared to males (+49%)

VISUAL TECHNIQUE COMPARISON

male female

VISUAL TECHNIQUE COMPARISON

 male players had more counter-rotated trunks (x-factor) during the backswing phase

 male players have more flexed trunk positions during the backswing phase

 male players had more laterally flexed trunk positions (to the left if right-handed) during the backswing phase

 male players held their arm further behind the body (shoulder plane of elevation) during the backswing phase.

male players used a smaller elbow flexion/extension range of motion

SUMMARY

 25% quicker smash, ≈40 cm higher jump height, steeper smash, shorter swing time

- clear differences mainly during backswing phase
- similar position at impact

ACKNOWLEDGEMENTS

- Badminton England
- Badminton World Federation

All students and staff at Loughborough

THANK YOU

VISUAL TECHNIQUE COMPARISON

male female

