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Introduction: Playing badminton has been reported with extensive health
benefits, while main injuries were documented in the lower extremity. This
study was aimed to investigate and predict the knee- and ankle-joint loadings
of athletes who play badminton, with “gold standard” facilities. The axial impact
acceleration fromwearables would be used to predict joint moments and contact
forces during sub-maximal and maximal lunge footwork.

Methods: A total of 25 badminton athletes participated in this study, following a
previously established protocol of motion capture andmusculoskeletal modelling
techniques with the integration of a wearable inertial magnetic unit (IMU). We
developed a principal component analysis (PCA) statistical model to extract
features in the loading parameters and a multivariate partial least square
regression (PLSR) machine learning model to correlate easily collected
variables, such as the stance time, approaching velocity, and peak
accelerations, with knee and ankle loading parameters (moments and contact
forces).

Results: The key variances of joint loadings were observed from statistical
principal component analysis modelling. The promising accuracy of the partial
least square regression model using input parameters was observed with a
prediction accuracy of 94.52%, while further sensitivity analysis found a single
variable from the ankle inertial magnetic unit that could predict an acceptable
range (93%) of patterns and magnitudes of the knee and ankle loadings.

Conclusion: The attachment of this single inertial magnetic unit sensor could be
used to record and predict loading accumulation and distribution, and placement
would exhibit less influence on the motions of the lower extremity. The intelligent
prediction of loading patterns and accumulation could be integrated to design
training and competition schemes in badminton or other court sports in a
scientific manner, thus preventing fatigue, reducing loading-accumulation-
related injury, and maximizing athletic performance.
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Key points:

• We developed principal component analysis (PCA) and
partial least square regression (PLSR) statistical models to
predict the knee- and ankle-joint loadings during badminton
footwork from wearables.

• Flexion moment, AP, and axial contact forces in the knee were
significantly higher during maximal lunges.

• During maximal lunges, dorsiflexion moment, AP, and axial
contact forces in the ankle were significantly higher than those
during sub-maximal lunges.

• Key variances (over 73%) between the vertical GRF of sub-
maximal and maximal lunges were located in the initial and
secondary impact peaks.

• Inertial magnetic unit (IMU) attached to the ankle showed
promise (93%) to predict biomechanical loadings in the knee
and ankle joints.

1 Introduction

Badminton lunges typically manifest as unilateral movements
with the upper and lower extremities on the same side (depending
on the right- or left-limb dominant) (Yu et al., 2021a). The current
study followed up our previous study on the investigation of knee-
joint loadings during directional badminton lunges using
musculoskeletal-driven finite element modelling, which was
supported by the Badminton World Federation (BWF) research
project, reporting that the left-side (forecourt and backcourt)
backhand lunges exhibited larger knee loadings (i.e., joint
moments and contact forces) compared to the right-side
(forecourt and backcourt) forehand lunges (Yu et al., 2021a). It
was further proposed that the next-step research will focus on the
dynamic monitoring of lower extremity loadings from the lab-
simulated court toward on-court intelligent monitoring. A key
issue observed in the previous studies was that the lab-simulated
studies strictly controlled variables, which is not the case during real
on-court training and competition.

Considering the high ratio of injuries in the lower extremity,
particularly the injuries in the knee and ankle joints have been
commonly reported and documented in previous studies, such as
ankle sprains (fractures), knee pains, and Achilles tendon ruptures,
among others (Chard and Lachmann, 1987; Jérgensen and Winge,
1987; Kroner et al., 1990; Fahlström et al., 1998; Fong et al., 2007).
Lab-simulated experiments were conducted to reveal and
understand the potential injury mechanism (Lee and Loh, 2019;
Lam et al., 2020; Phomsoupha and Laffaye, 2020). However, it was
also acknowledged that the biomechanical experiments conducted
in the lab environment are different from “real” on-court training
and competition.

The prevention of injuries in badminton has been an area of avid
interest for sports scientist, biomechanist, physical therapist, and
sport medicine clinician. Based on the contributing mechanism, the
injuries have been classified as chronic injury due to the reason of
repetitive loading accumulation and acute injury from unexpected
incursion (Goh et al., 2013; Reeves et al., 2015). Our recent study has
revealed the loading patterns of the knee joint from directional
lunges in a lab-simulated court and reported a higher loading in the

backhand side (Yu et al., 2021a). The challenge of discrepancy
between lab tests and on-court situation was further reported and
highlighted, and a badminton-specific task with wearable and
adjustable loads was proposed to improve training specificity (Yu
and Mohamad, 2022). Recently, the rapidly emerging wearable
technology in the biomechanics research community provided
plausible and accessible approaches to solving this challenging
issue, with the integration of machine learning and artificial
intelligence techniques. These have been implemented in the
measurement of gait patterns (Shahabpoor and Pavic, 2017) and
monitoring of running load accumulation (Ueberschär et al., 2019;
Van Hooren et al., 2020).

The purpose of the current study was to conduct a perspective
study toward the monitoring of loads in the knee and ankle joints
using wearable technology and machine learning estimation. Thus,
this study first correlated the data from wearables using the ground-
truth lab test to develop and validate intelligent machine learning
models. In particular, a PCA model was developed for feature
extraction and dimensionality reduction, thus correlating data in
wearables using the “ground-truth” lab test, and a PLSR machine
learning model was used for multivariate correlation and prediction
to estimate the loads in the “real” on-court badminton training and
competition.

2 Methodology

2.1 Participants

A total of 25 experienced male badminton athletes (age: 24.3 ±
4.5 years; height: 175 ± 3.6 cm; weight: 71 ± 4.2 kg; years of
badminton playing: 7.1 ± 3.2 years; all were right-hand
dominant) participated in the lab test, and the synchronized
collection of motion data and IMU data (fist session) was
performed. This study was approved by the Ethical Committee of
the Research Institute in Ningbo University (RAGH20190901). All
athletes were informed of the requirements, objectives, and
procedures of the lab and on-court tests, and written consent was
obtained.

2.2 Protocol

The first session of the lab test synchronized the 3D motion
capture and wearable sensors. The test involved a 12-camera Vicon
system and Vicon IMU wearable sensors (Vicon Metrics Ltd.,
Oxford, United Kingdom) and an AMTI 3D force plate (AMTI,
Watertown, MA, United States) (Figure 1). The collection frequency
of the Vicon camera system was set at 200 Hz, and the IMU and
force plate were set at 1000 Hz.

In order to mimic the real movements, we employed an
established full-body marker-set model during motion capture
(Rajagopal et al., 2016). The IMU sensors for the ankle and knee
joints are illustrated in Figure 1B. In particular, the knee IMU was
placed 2 cm below the medial condyle of the proximal tibia, and the
ankle IMU was placed 3 cm above the medial malleolus of the distal
tibia (Sheerin et al., 2020). The vertical axis of the IMU sensor was
axially aligned with the midpoint of the ankle and knee joints in the
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tibia, which was validated in a clinical protocol of our previous study
(Yeung et al., 2022). To follow up on our previous studies (Mei et al.,
2017; Yu et al., 2021a), the four directional sub-maximal and
maximal lunges were performed with a synchronous collection of

motion, ground reaction force, and IMU data for further processing
and analysis. Particularly, the sub- and maximal-right-forward
forehand lunges (Sub-RF and Max-RF), sub- and maximal-left-
forward backhand lunges (Sub-LF and Max-LF), right-backward

FIGURE 1
Illustration of the experimental setup (A) and IMU placement (B).

FIGURE 2
Illustration of the musculoskeletal modelling pipeline.
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backhand sub-maximal andmaximal lunges (Sub-RB andMax-RB),
and left-backward backhand sub-maximal and maximal lunges
(Sub-LB and Max-RB) were performed with 80% (for sub-
maximal) and 100% (for maximal) efforts, following the previous
protocol (Lam et al., 2017; Lam et al., 2018; Yu et al., 2021a).

2.3 Data processing

The joint kinematics, kinetics, and contact forces were
calculated, following the previously established protocols of
musculoskeletal OpenSim modelling. Machine learning models
were also developed and tested using motion capture data against
the acceleration and angular velocity data from wearable sensors.

First, the static marker positions and body mass were used to
“scale” the generic model to match subject-specific musculoskeletal
models (Figure 2), as per the standardized workflow (Delp et al.,
2007), which was validated in our recent studies (Mei et al., 2019; Yu
et al., 2021a). The “inverse kinematics” (IK) algorithm, which
minimized errors between virtual markers in the model and
experimental marker trajectories, was applied to compute joint
angles. Then, the “inverse dynamics” (ID) algorithm was
performed to calculate joint moments, and the “static
optimization” (SO) algorithm was applied to compute muscle

activation and forces. The estimated muscle activation was
compared with the measured surface EMG signals to validate the
model (Yu et al., 2021a). Lastly, the contact forces towards the knee
and ankle joints in the anterior/posterior (x), superior/inferior (y),
and medial/lateral (z) directions were computed using “joint
reaction” (JR) analysis.

In addition to the biomechanical variables, we also calculated the
parameters of contact time, approaching velocity, and peak IMU
accelerations (G) in the knee and ankle joints, as shown in Figure 3.
The loading rate was calculated following the previous established
protocol (Mei et al., 2019; Yu et al., 2021b). The axial (y-axis)
acceleration of particular interest was taken for analysis to quantify
the accumulation of impact in the lower extremity (tibia) (Rice et al.,
2019; Tenforde et al., 2020), which was normalized by gravitational
acceleration (G = 9.8 m/s2).

The processed time-varying moment and contact force
parameters during the lunging stance (Figure 4) were
interpolated (normalized) into a 101 datapoint for statistical
modelling (Yu et al., 2021b; Mei et al., 2021). Particularly, the
biomechanical parameters included the knee flexion/extension
moment, knee varus/valgus moment, knee int/ext rotation
moment, ankle dorsi/plantar flexion moment, ankle inversion/
eversion moment, knee ant-post/med-lat/vertical contact forces,
and ankle ant-post/med-lat/vertical contact forces. The joint

FIGURE 3
Illustration of synchronized ground reaction forces with IMU acceleration signals of the knee and ankle in the axial direction.
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moment was normalized to body mass in kg (unit: Nm/kg), and the
joint force was normalized to body weight (unit: times Newton
in BW).

2.4 Statistical analysis and modelling

The discrete values of approaching velocity, stance time, knee
and ankle acceleration, peak knee and ankle moments, and peak
knee and ankle joint contact forces were first checked for the
normality distribution and were compared using the paired
sample t-test with a significance level at 0.05. The time-varying
joint moment and force over stance were then modelled with the
multivariate statistical models. In the current study, the statistical
models were developed and validated, as described in our previous
studies, using MATLAB software (R2019a, MathWorks Inc., MA,
United States of America), specifically PCA (Yu et al., 2021b) and
PLSR modelling (Mei et al., 2020).

In this study, the PCA multivariate technique (Wold et al., 1987;
Lever et al., 2017; Yu et al., 2021b) was used to reduce the high-
dimensional data matrices into orthogonal principal components
(PCs), which explained major variations within the dataset (Deluzio
et al., 1997; Lever et al., 2017). Each variation reported in the PCA
modelling was a feature extraction applied in the machine learning
(PLSR) technique (Phinyomark et al., 2018).

As presented in Eq. 1, the original matrices (X = x1, x2, x3, . . ., x99,
x100, x101) *m were orthogonally transformed into uncorrelated
principal components (Z = z1, z2, z3, . . . , zp) (p < 101),
corresponding loading vectors (T2 = T1, T2, T3, . . ., Tm), and
residuals (Q), which was defined as Z = X*T2 (Deluzio et al., 1997).
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The m equals 200 (4*2*101 matrices) for PCA modelling of the
four lunges (RF, LF, RB, and LB) with sub-maximal and maximal
performance. This study mainly considered the main variations in
the first three PCs (z1, z2, and z3), which accounted for
approximately 85–90% of the variation (Yu et al., 2021b). The
variations in the vertical ground reaction force, knee and ankle
moments, and contact forces of the first three PCs were then plotted
against the mean for the visualization of the key features of
variances, with “+” and “▽” representing the upper and lower
limits, respectively.

In terms of PLSR statistical modelling (Wold et al., 1984; Mei
et al., 2020), the two fundamental equations are the predictor matrix
(XNM) and the response matrix (YNP), which are expressed as
follows:

XNM � TNL P
T
ML + ENM, (2)

YNP � UNL Q
T
PL + FNP. (3)

The subscriptN represents the number of datasets (25*4 training
samples in this study). The subscript M represents the number of
predictor variables (four metrics, namely, contact times, velocity,
peak knee G, and peak ankle G). The subscript P represents the
number of response variables (12 loading variables, such as loading
rate, knee flex-extension/varus-valgus/int-ext rotation moments,
ankle dorsi-plantar flexion/inversion-eversion moments, knee
ant-post/med-lat/vertical contact forces, and ankle ant-post/med-

FIGURE 4
Illustration of the knee and ankle loading parameters.
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lat/vertical contact forces), and the subscript L represents the
number of components.

T and U are the projection matrices (also called the scores); P
and Q are the transposed orthogonal loading matrices (where the
rows are created from eigenvectors or principal components); and E
and F are the error or residual terms. The score vectors are related
using a linear function, U = f(T) + H, where H is the vector of
residuals.

3 Results

3.1 PCA

The vertical ground reaction force (Figure 5A) was classified into
four key phases: initial impact peak (I), secondary impact peak (II),
weight acceptance (III), and drive-off (IV) phases (Figure 5B).
Following the PCA modelling of the vertical GRF, the first mode

(PC1, Figure 5C) showed the main variations (percentage of
variation explained: 31.67%) from landing to the initial impact
peak (Phase-I), where the loading rate (LR) was calculated as a
key impact parameter. The second mode (PC2, Figure 5D) occurred
in the secondary impact peak (Phase-II) (27.58%), and the third
mode (PC3, Figure 5E) was the combination of variations (14.1%) in
both the initial and secondary impact peaks (Phase-I and Phase-II),
which was the impact transient.

Consistent with the variations in vertical GRF, the knee flexion/
extension, varus/valgus and int/ext rotation moments showed great
variances mainly during the landing (impact absorption) phase. As a
particular interest to illustrate key variations, the PC1 of knee
flexion/extension (31.45%, impact phase), varus/valgus (32.25%,
landing and drive-off phases), and int/ext rotation (52.91%, over
the stance) moments is presented in Figure 6, with highlighted
regions.

As shown in Figure 7, the key variations in the knee contact
forces were observed over the stance with PC1 of ant-post (48.82%)

FIGURE 5
Illustration of data collection (A), classification of four phased in the vertical ground reaction force during lunging (B) and three principal modes of
variance (C–E).
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and med-lat (48.36%) forces, while the axial contact force was
mainly observed during the mid-stance (39.91%), especially the
weight acceptance phase showing the difference between sub-
maximal and maximal lunging steps.

The ankle dorsi/plantar flexion and inversion–eversion
moments had a principal variance over the stance, especially PC1
(59.86% and 35.03%, respectively) during impact absorption and
drive-off phases (Figure 8). It is worth noting the secondary

FIGURE 6
Kneemoments (mean), PC scores, and key modes of variations (PC1, PC2, and PC3) against the mean with the illustration of the upper (+) and lower
(▼) limits.
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variation in the dorsi/plantar flexion moment during the drive-off
phase (PC2: 17.38%), which may explain the difference in ankle
contributions during the push-off phase to the return phase. The
inversion–eversion moments mainly varied during mid-stance (PC:
24.02%), which was another difference between sub-maximal and
maximal lunges.

Similarly for the ankle contact forces, great variations (PC1) in the
impact peaks (initial and secondary) and drive-off phases were observed
in the ant-post (38.37%), axial (49.45%), and med-lat (49.64%) vectors
(Figure 9). Secondary (PC2) variations in the impact peaks were found
in the ant-post (29.13%) and axial (20.86%) forces, while the med-lat
forces varied across the stance (24.86%).

FIGURE 7
Knee forces (mean), PC scores, and keymodes of variations (PC1, PC2, and PC3) against themean with the illustration of the upper (+) and lower (▼)
limits.
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FIGURE 8
Ankle moments (mean), PC scores, and keymodes of variations (PC1, PC2, and PC3) against themeanwith the illustration of the upper (+) and lower
(▼) limits.
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3.2 PLSR

Following PCA modelling, statistical comparisons of contact times,
approaching velocities, peak acceleration (knee), and peak acceleration
(ankle) were conducted, as presented in Table 1, which were then input

as predictors in the PLSRmachine learningmodel. Sub-maximal lunges
showed shorter contact times, smaller approaching velocity, and smaller
ankle impact than those in maximal lunges in four directions.

LR, peak knee flexion/extension, varus/valgus, and int/ext rotation
moments, peak ankle dorsi/plantar flexion and inver/eversion

FIGURE 9
Ankle forces (mean), PC scores, and keymodes of variations (PC1, PC2, and PC3) against themeanwith the illustration of the upper (+) and lower (▼)
limits.
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moments, peak knee ant-post/med-lat/axial (vertical) contact forces,
and peak ankle ant-post/med-lat/axial (vertical) contact forces were
analyzed, as shown in Table 2. Themaximal lunges had greater LR, joint
moments, and contact forces overall than those in submaximal lunges.
These discrete parameters were then used as response metrics to train
the PLSR machine learning model.

Together with the four predictors, a prediction accuracy of
94.52% was observed for the moments and contact forces in the
knee and ankle joints (Figure 10). To test the sensitivity of the knee
and ankle peak acceleration, we performed a “leave-one-out” cross
validation and found that both knee and ankle peak acceleration
could predict 93.72% of the loadings. In particular, the knee peak
acceleration had an 88.76% prediction accuracy and the ankle peak
acceleration had a 93% prediction accuracy.

4 Discussion

This study integrated the wearable sensors with the in-lab motion
capture analysis to correlate the wearable signals with biomechanical

loading metrics and successfully implement machine learning
predictive models (PCA and PLSR). The peak acceleration from
wearable sensors attached to the lower limb of the badminton
athletes could predict knee and ankle joint loadings with excellent
accuracy (94.52%). The key findings of PCA modelling indicated that
the variances between the vertical GRF of sub-maximal and maximal
lunges are located in the initial and secondary impact peaks (including
the loading rate region). Similar variances in the knee flexion/extension
and varus/valgus moments were found within the timeframes, in
addition to the axial knee contact force that mainly varied in the
mid-stance. The ankle dorsi/plantar flexion and inversion/eversion
moments and axial contact force showed greater variances during
the initial landing (impact absorption) and push-off phases between
sub-maximal and maximal lunges.

During the lab-simulated biomechanical test, we applied the well-
established protocols (Kuntze et al., 2010; Huang et al., 2014; Lin et al.,
2015; Lam et al., 2017; Mei et al., 2017) for motion capture and
synchronously integrated the IMU sensors to set up the ground
truth “gold standard” facilities. The wearable technologies have been
implemented for the recognition of badminton-relevantmovements for

TABLE 1 Statistics of predictor metrics (time, velocity, knee impact, and ankle impact).

Sub Max p

Mean ± SD 95%CI Mean ± SD 95%CI

Time (s) 0.64 ± 0.06 0.59–0.68 0.71 ± 0.04 0.67–0.75 0.02

Velocity (m/s) 2.1 ± 0.15 1.96–2.21 2.7 ± 0.18 2.58–2.83 <0.00

Knee impact (G) 7.9 ± 2.44 5.72–10.24 7.6 ± 3.4 5.38–9.9 0.82

Ankle impact (G) 8.96 1.88 7.82–10.09 11.1 0.98 9.97–12.24 0.01

Bold values indicates significance.

TABLE 2 Statistics of response metrics (loading rate and knee and ankle moments and forces).

Sub Max p

Mean ± SD 95%CI Mean ± SD 95%CI

LR (BW/s) 80.6 ± 16.4 60.92–100.29 133.4 ± 32.8 113.7–153.1 0.001

Knee (Nm/kg) (*BW) Flexion moment 2.1 ± 0.15 1.96–2.21 2.7 ± 0.18 2.58–2.83 <0.000

VV moment 7.9 ± 2.44 5.72–10.24 7.6 ± 3.4 5.38–9.9 0.82

Int/ext rot moment 8.96 ± 1.88 7.82–10.09 11.1 ± 0.98 9.97–12.24 0.01

AP force 1.35 ± 0.19 1.19–1.51 1.92 ± 0.22 1.76–2.08 <0.000

Axial force 9.4 ± 0.82 8.19–10.61 11.37 ± 2.1 10.16–12.58 0.026

ML force 1.84 ± 0.17 1.61–2.07 2.37 ± 0.4 2.15–2.61 0.003

Ankle (Nm/kg) (*BW) Dorsi/plantar-
flexion moment

1.22 ± 0.08 0.97–1.48 1.79 ± 0.47 1.54–2.05 0.0043

Inv/eve moment 0.74 ± 0.27 0.2–1.48 1.73 ± 1.34 0.99–2.46 0.061

AP force 1.04 ± 0.12 0.88–1.2 1.5 ± 0.27 1.34–1.66 0.0006

Axial force 3.41 ± 0.23 3.03–3.79 4.59 ± 0.67 4.21–4.97 0.0004

ML force 0.29 ± 0.05 0.24–0.35 0.47 ± 0.09 0.41–0.53 0.4

Bold values indicates significance.
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game analysis, showing promising accuracy (Steels et al., 2020). Results
of stance time, approaching velocity, and joint biomechanical loadings
are consistent with those of the recent studies on badminton lunge
footwork (Kuntze et al., 2010; Hong et al., 2014; Huang et al., 2014; Lam
et al., 2017; 2018; Chen et al., 2022). Considering the validated results,
the primary applications of this study were to monitor and predict the
loadings (jointmoments and contact forces) in the knee and ankle joints
with machine learning models.

Understanding the loading distribution and accumulation would
assist the investigation of the injuries in the lower extremity of
badminton players. Several recent review studies on badminton
injuries and lunges (Lee and Loh, 2019; Lam et al., 2020;
Phomsoupha and Laffaye, 2020) reported that fatigue of the
musculature system was a key factor which contributed to reduced
performance and loading accumulation (increased injury risks).
Dynamic loading accumulation and distribution data in the “real-
world” scenario collected from wearables during training and
competition were monitored and reported based on the correlative
prediction machine learning model. Typically, the results demonstrated
that a combined physics-based and machine learning model offered
promising solutions to tibia loading accumulation (Matijevich et al.,
2020).

The main feature extracted from PCA modelling in the vertical
GRF and knee and ankle moments and contact forces was the
magnitude difference, considering different timeframes during
stance. In particular, during the initial and secondary impact peak
phases, the variances in the knee and ankle moments were observed,
which may be explained by different approaching speeds between sub-
maximal (~2.5 m/s) and maximal (~3.5 m/s) lunges, which are
consistent with recent studies (Lam et al., 2018; Chen et al., 2022).
The axial knee contact force varied between sub-maximal and maximal
lunges during the mid-stance of the weight acceptance phase, which

may be attributed to higher impact and highly activated muscular
contractions (Fu et al., 2017). The difference between directional lunges
was not reported as it was observed in our previous project that left-side
(backhand) forward and backward lunges showed higher knee loadings
than the right-side lunges (Yu et al., 2021a). This aimed to mimic the
real on-court situation where shuttles were not returned in an
anticipated manner from the opponent, and athletes could perform
any directional lunges from unexpected scenarios.

In terms of the difference during the drive-off phase in the ankle
plantar flexion moment and axial contact forces, these may show
different multi-joint coordination patterns, as higher motion
acceleration and deceleration could be observed in the sub-maximal
andmaximal lunges (Lee and Loh, 2019). Thus, the different acceleration
and deceleration strategies or coordination exerted a greater impact on
the ankle, which functioned as the primary interface with the court (Wei
et al., 2015; Fong et al., 2021). In terms of the significant difference
between the ankle and knee impact acceleration, a possible explanation
could be that the tibia (shank) absorbed most of the impact at initial
contact, which is considered tomonitor the impact loading accumulation
so as to reduce shank pain (Verrelst et al., 2014). The postural position,
such as trunk bending and lumbar ratios,may also affect knee loadings, as
reported in recent studies (Huang et al., 2014; Lin et al., 2015;Wang et al.,
2023).

The multivariate machine learning (PLSR) model we developed
showed promising performance (~94.52% accuracy) while inputting the
contact times, approaching velocity, and ankle and knee peak
acceleration to predict knee and ankle loadings. These input
parameters could easily be measured or calculated from IMU
sensors. In order to simplify the machine learning prediction model,
we trained the PLSR model with ankle and knee peak acceleration,
showing similar accuracy (~93.72%). Considering that the attachment
of two belts with IMU to the proximal and distal tibiae may limit the

FIGURE 10
Performance and validation of the PLSR machine learning model.
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movement of badminton athletes, we used the single knee or ankle IMU
each as a predictor in the PLSR model, and the knee IMU and ankle
IMU showed an accuracy of 88.76% and 93%, respectively. From the
sensitivity analysis of the PLSRmodel we developed, it was learned that
a single IMU sensor attached to the anterior distal tibia above themedial
malleoli could predict approximately 93% of loadings in the ankle and
knee joints, which was consistent with our clinical study (Yeung et al.,
2022). Meanwhile, over 20% of total footwork measured during one
single match could be used to estimate the loading accumulation in the
knee and ankle joints (Valldecabres et al., 2020).

There are several limitations that should be considered before
acknowledging the findings from the current study. First, the
“ground-truth” synchronized data were collected in a lab-simulated
court, which might not mimic the real match (or training) scenarios
considering the fatigue and varied conditions. Future study shall
consider a well-designed experimental setup that match the real
badminton court under training and match conditions. Second, only
the discrete and key datapoints were applied to train and test the
intelligent statistical models, without considering the time-varying
features; thus, other machine learning algorithms, deep learning
algorithms, and convolutional neural networks (such as long short-
term memory, LSTM) may be utilized for the monitoring and
prediction of loading accumulation (Shao et al., 2022; Liew et al., 2023).

5 Conclusion

In summary, this study successfully utilized the wearable
technology and machine learning models to predict the joint
loadings in a lab-simulated badminton court test, showing
promise and feasibility of application into the “real-world”
scenario. The intelligent and dynamic framework developed in
the current study provided a perspective to address the gap
between lab and on-court analyses, taking the badminton lunge
footwork as a proof-of-concept example. The intelligent monitoring
and feedback of loading patterns or accumulation could be
integrated to design the training and competition schemes in
badminton or other court sports in a scientific manner, thus
preventing fatigue, reducing potential loading-accumulation-
related injury, and maximizing athletic performance.
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